Filter-Wrapper based Feature Ranking Technique for Dynamic Software Quality Attributes
نویسندگان
چکیده
This article presents a filter-wrapper based feature ranking technique that is able to learn and rank quality attributes according to new cases of software quality assessment data. The proposed feature ranking technique consists of a scoring method named Most Priority of Feature (MPF) and a learning algorithm to learn the software quality attribute weights. The existing ranking techniques do not address the issue of redundancy in ranking the software quality attributes. Our proposed technique resolves the redundancy issue by using classifiers to choose attributes that shows high classification accuracy. Experimental result indicates that our technique outperforms other similar technique and correlates better with human experts.
منابع مشابه
Fast wrapper feature subset selection in high-dimensional datasets by means of filter re-ranking
This paper deals with the problem of supervised wrapper-based feature subset selection in datasets with a very large number of attributes. Recently the literature has contained numerous references to the use of hybrid selection algorithms: based on a filter ranking, they perform an incremental wrapper selection over that ranking. Though working fine, these methods still have their problems: (1)...
متن کاملImproving Incremental Wrapper-Based Subset Selection via Replacement and Early Stopping
This paper deals with the problem of feature subset selection in classification-oriented datasets with a (very) large number of attributes. In such datasets complex classical wrapper approaches become intractable due to the high number of wrapper evaluations to be carried out. One way to alleviate this problem is to use the so-called filter-wrapper approach or Incremental Wrapper-based Subset S...
متن کاملDeveloping a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression
Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کامل